

Contents

- オッズ(Odds)とは?
- オッズ比(Odds Ratio)
- ・オッズ比の利用の意味

• ロジスティック回帰

2つの事例から

CHECKER STATE STAT

Cohort Study	Tumor		Total
	developed	not developed	
exposed	52	2820	2872
not exposed	6	5043	5049

Case Control Study Tumor				
		developed	not developed	
	exposed	66	14	
,	not exposed	27	15	
	Total	93	29	

オッズとは?

Odds

$$\frac{p}{1-p}$$

例:イギリスのBookmaker Japan to win 2006 World Cup: 150 to 1

:雨が降るか? even (1 to 1) [五分五分]

比較研究

• 2群比較を例に...

無作為標本を比較

 p_A と p_B を比較

事例(1)

Cohort Study	Tumor developed not developed		Total
exposed	52	2820	2872
not exposed	6	5043	5049

•発生率: p_A =0.01811, p_A =0.01811

•相対リスクの推定値:15.236

•相対リスクの95%信頼区間:[9.91, 23.43]

オッズ比の必要性

а	b	<i>a</i> + <i>b</i>
C	d	c+d
2 1		

a	b	(a+b)
С	d	(c+d)
a+c	b+d	

コホート研究の場合

Case-Control研究の場合

右の表の場合、a/(a+b)やc/(c+d)自体は意味がないよって、相対リスク自体の推定ができない

オッズ比のマジック

a	b	a+b
c	d	c+d

a	b	(a+b)
c	d	(c+d)
a+c	b+d	

研究の方向(標本の取り方)が違っていても、 オッズ比は同じ!!!

オッズ比のマジック

p_1	1-p ₁	1
p_2	1-p ₂	1

$$\frac{p_1(1-p_2)}{(1-p_1)p_2}$$

オッズ比のマジック

A TENNESSEE STATE STATE

80	120	200
10	90	100

80	120	
10	90	
90	210	(day)

0.4	0.6	1
0.1	0.9	1
4 4 4		

8/9	4/7	
1/9	3/7	
1	1	

オッズ比は両方とも 6

オッズ比と比率の比較

•
$$p_1$$
と p_2 の比較 $\frac{p_1}{p_2}$

• オッズ比

$$\frac{p_1(1-p_2)}{(1-p_1)p_2}$$

 p_1 と p_2 が0に近ければ、上記の2つの量は、似た値になる

事例(2)

Case Control Study	Tumor		
	developed	not developed	
exposed	66	14	
not exposed	27	15	
Total	93	29	

オッズ比の推定値: 2.62

•オッズ比の95%信頼区間: [1.69, 4.05]

他の要因を考慮した効果の測定

- マンテル・ヘンテェル推定量
 - -他の要因で層別しても、オッズ比は共通であるという仮定の下で、共通オッズ比を推定

- ロジスティック回帰分析
 - 複数の要因の効果を調整する方法。回帰分析に似た分析手法

マンテル・ヘンテェル推定量

• 共通オッズ比の推定

年齢=30-50 a_2 b_2 a_1 b_1 d_2 c_1 d_1

年龄=70以上

a_p	b_p	
c_p	d_p	

$$\frac{\sum_{i=1}^{p} a_{i} \sum_{i=1}^{p} d_{i}}{\sum_{i=1}^{p} b_{i} \sum_{i=1}^{p} c_{i}}$$

ロジスティック回帰分析

• 目的は判別分析とほぼ同じ

・正応答確率などを積極的に推定したい場合などに便利(確率の算出において、説明 変数の分布の仮定が不必要)

・ 正応答確率に対する(線形)モデル

ロジスティック回帰分析

$$p(Y = 1) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}$$

$$\log \frac{p(Y=1)}{1-p(Y=1)} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

回帰係数の推定には、最尤推定法(MLE)が用いられる

ロジスティック回帰分析

- モデルの適合度の比較
 - 尤度比検定

- 回帰係数の検定やチェック
 - Wald 検定 (t 検定と同じようなもの)
 - ・漸近的な性質を利用
 - オッズ比に直して解釈することもある(exp(β))

掲載されている著作物の著作権については、制作した当事者に帰属します.

著作者の許可なく営利・非営利・イントラネットを問わず、本著作物の複製・転用・販売等を禁止します.

所属および役職等は、公開当時のものです.

■公開資料ページ

弊社ウェブページで各種資料をご覧いただけます http://www.i-juse.co.jp/statistics/jirei/

■お問い合わせ先

(株)日科技研 数理事業部 パッケージサポート係 http:/www.i-juse.co.jp/statistics/support/contact.html